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MSL Entry Descent and Landing Instrumentation (MEDLI)

• Mars Science Laboratory (MSL) has a 4.5m diameter PICA tiled 

heatshield.  It launches November 2011, and will enter Mars in the 

summer of 2012

• The heatshield is instrumented via MEDLI, with two main 

components

– MEADS (Mars Entry Atmospheric Data System) Pressure 

ports and transducers, at 7 locations

– MISP (Mars Integrated Sensor Plug) 

In-depth sensors at 7 locations, embedded in TPS.



MISP (MEDLI Instrumented Sensor Plug)

• Each MISP consists of four thermocouples in 1.1” 

diameter by 1.25” deep PICA cylinder, with

• Four type-K thermocouples (TCs) with range to  

1300K:

– Two near surface thermocouples (0.1” and 0.2”) 

are sampled at 8 Hz, 

– Two deeper TCs (0.45” and 0.7”) are sampled 

at 1 Hhz.

• One HEAT (Hollow aErothermal Ablation and 

Temperature) sensor:

– Wound Tungsten wires in Kapton tubing that is 

electrically conductive when charred, and 

changes resistivity (sampled at 8 Hz),

– Often called a “Recession Sensor”, it does not 

measure recession, but tracks an iso-therm (720 

deg C) through the material. For constant 

developed steady-state ablation, corresponds to 

recession rate.

Polyimidetube

Polyimide 

coating

Two Pt-W wires

Cross section of single MISP
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MISP Science Goals

• MISP Requirements specifically call for:

– Measure subsurface temperature within  12%

– Track 720C iso-therm progression through TPS within 0.03”

– Determine total TPS recession within  0.25”

– Reconstruct Basic distribution of heating and stagnation point 

heating within  30 W/cm2

– Determine time of turbulent transition, within 2 seconds

– Assess turbulent leeside heating within  30 W/cm2

– Identify windside heating augmentation within  30 W/cm2

• Only the first two are directly measured with instrumentation.

• All others require analysis in-the-loop (Hypersonic Computational Fluid 

Dynamics, and Ablator material modeling)
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Aerothermal Reconstruction

Aerothermal environments:

Gas-surface interaction

Turbulent onset and augmentation

Trajectory and atmospheric models

Gas-phase chemistry

Blowing and roughness

…

Sensor Response

TC Thermal lag

HEAT Calibration

Noise Filtering

Response to transient environment

…

Material Response

Virgin properties

Char properties

Pyrolysis gas chemistry

Recession uncertainty

…

Aerothermal reconstruction requires modeling and ground-

based testing for three broad categories:
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Aerothermal Analysis

• What is the expected 

MISP response to 

turbulent transition and 

augmentation?

• For a single plug 

location, the response 

of top two TCs is 

shown, for simulated 

laminar and turbulent 

environments.

• Turbulent heating 

leads to a noticeable 

slope change in TCs 

particularly close to 

surface.
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Ablator Modeling and 

Material properties testing

• Existing material models for PICA 

are intended to cover variability in 

PICA billets, and in arc-jet tests.

• We are tailoring the PICA model to 

the material in the sensor plugs, 

with an emphasis on parameters 

relating to thermal conduction 

model (virgin and char r, CP, and k)

• We also are assessing the impact of 

material modeling uncertainties 

within our analysis tools.
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MISP Sensor Lag

• Thermocouple accuracy is determined from manufacturer’s ratings, and current 

lag has determined from simplified 2D finite element analysis of arc-jet tests.

• Ongoing 3D finite element analysis should provide better understanding of lag, 

and possible improvements in HEAT calibration.
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Putting it all together
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• Direct process akin to vehicle design

• Flight data process needs way to reconcile 

predicted environments and measured 

environments

• Analysis step must include model 

sensitivities.
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Predictor-Corrector Development

• Given a material model, four 

TCs, and an isotherm, how do you 

recreate in time what happened at 

the TPS surface (film coefficient, 

and pressure)?

• Several methods in development:

– JSC EG3 developing inverse 

routines for OFT-1 heat shield 

sensors that searches for CH.

– Optimization routine wrapped 

around FIAT (FIAT_Opt), to 

iterate for CH, and also edge 

enthalpy, and/or pressure.
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• Predictor-Corrector process is limited by:

– Stability of reverse methodology

– Quality of input data (susceptible to 

sensor noise)

– Applicability of material model



Conclusions & Forward Work

• We need continued aerothermal CFD, material, and 

sensor analysis, as well as arc-jet and materials 

properties testing to understand MISP response and 

MSL environments.

• Imperative to apply analysis tools and methodologies 

on arc-jet test data.

• Data gathered will be greatly valuable to the 

aerothermal community, and available for future 

reconstruction, improvement of tools and methodology.
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Backup



Aerothermal Sensitivities, cont.

• To assess the overall sensitivity of the sensors to a heating increase,  the entire heating pulse is scaled linearly, 

from -3 sigma to +3 sigma.

• We then extract the miniumum change in the peak heatflux that will cause any of the TCs or HEAT to fall 

outside the known instrument uncertainty .

• This provides a rough sensitivity of the MISP sensors to aerothemal uncertainties, relative to the peak-heatflux.



Inverse Parameter Estimation approach

• The Inverse Parameter Estimation (IPE) code wraps around FIAT and 

estimates scaling factors of the input parameters to match measured data 

via an optimization procedure.

• Code verification

– Recovers parameters back to the nominal values if starting at a 

random initial guess

– Converges to the mathematical minimum of the sum of squares of 

errors with the experimental data

• Code validation: ArcJet MSL PICA test

• Challenges:

– Solution existence, uniqueness and process stability

• Minimize errors: emodel, erandom, ebias

Sum of square of errors between 

measurements and FIAT 

predictions


